Chapter 15 Review Exercise Solutions

R15.1

A list is a good choice here. A list will allow duplicate items to be listed, a likely possibility on an invoice, and implies an order which also may be important for an invoice.

R15.2

A list is also a good choice here. A useful appointment calendar application will allow the user to browse appointments; although this is possible with stack or queue implementation, it would be awkward.

R15.3

One could create a map to a list of event objects. Then each key (date object) would return a list of all the appointments on that date.

R15.4

The code prints:

Tom

Diana

Harry

The best description to see what is going on is to examine the state of the linked list at each step. In the notation below the list is enclosed by [and].

1.

staff.addFirst("Harry");

staff = ["Harry"]

2.

staff.addFirst("Diana");

staff = ["Diana", "Harry"]

3.

staff.addFirst("Tom");

staff = ["Tom", "Diana", "Harry"]

4.

System.out.println(staff.removeFirst()); Prints Tom.

staff = ["Diana", "Harry"]

5.

System.out.println(staff.removeFirst()); Prints Diana.

staff = ["Harry"]

6.

System.out.println(staff.removeFirst()); Prints Harry.

staff = []

R15.5

The code prints:

Harry

Tom

Diana

The best description to see what is going on is to examine the state of the linked list at each step. In the notation below the list is enclosed by [and].

1.

staff.addFirst("Harry");

staff = ["Harry"]

2.

staff.addFirst("Diana");

staff = ["Diana", "Harry"]

3.

staff.addFirst("Tom");

staff = ["Tom", "Diana", "Harry"]

4.

System.out.println(staff.removeLast()); Prints Harry.

staff = ["Tom", "Diana"]

5.

System.out.println(staff.removeFirst()); Prints Tom.

staff = ["Diana"]

6.

System.out.println(staff.removeLast()); Prints Diana.

staff = []

R15.6

This code prints out:

Diana

Tom

Harry

The best description to see what is going on is to examine the state of the linked list at each step. In the notation below the list is enclosed by [and].

1.

staff.addFirst("Harry");

staff = ["Harry"]

2.

staff.addLast("Diana");

staff = ["Harry", "Diana"]

3.

staff.addFirst("Tom");

staff = ["Tom", "Harry", "Diana"]

4.

System.out.println(staff.removeLast()); Prints Diana.

staff = ["Tom", "Harry"]

5.

System.out.println(staff.removeFirst()); Prints Tom.

staff = ["Harry"]

6.

System.out.println(staff.removeLast()); Prints Harry.

staff = []

R15.7

This code prints the following:

Diana

Harry

The iterator builds up a list (Tom, Diana, Harry), then removes the first Tom while the loop removes the rest. Here is the state of the linked list at each step. In the notation below the list is enclosed by [and], and the iterator is indicated by a |.

1.

iterator.add("Tom");

staff = ["Tom"|]

2.

iterator.add("Diana");

staff = ["Tom", "Diana"|]

3.

iterator.add("Harry");

staff = ["Tom", "Diana", "Harry"|]

4.

iterator = staff.listIterator();

staff = [|"Tom", "Diana", "Harry"]

5.

if (iterator.next().equals("Tom"))

staff = ["Tom", |"Diana", "Harry"]

6.

iterator.remove();

staff = [|"Diana", "Harry"]

7.

while (iterator.hasNext())

System.out.println(iterator.next());

Iteration 1 prints Diana:

staff = ["Diana", |"Harry"]

Iteration 2 prints Harry:

staff = ["Diana", "Harry"|]

R15.8

The following code prints:

Diana

Romeo

Harry

Juliet

It is best explained by examining the state of the linked list. In the notation below the list is enclosed by [and], and the iterator is indicated by a |.

1.

iterator.add("Tom");

staff = ["Tom"|]

2.

iterator.add("Diana");

staff = ["Tom", "Diana"|]

3.

iterator.add("Harry");

staff = ["Tom", "Diana", "Harry"|]

4.

iterator = staff.listIterator();

staff = [|"Tom", "Diana", "Harry"]

5.

iterator.next();

staff = ["Tom", |"Diana", "Harry"]

6.

iterator.next();

staff = ["Tom", "Diana", |"Harry"]

7.

iterator.add("Romeo");

staff = ["Tom", "Diana", "Romeo", |"Harry"]

8.

iterator.next();

staff = ["Tom", "Diana", "Romeo", "Harry"|]

9.

iterator.add("Juliet");

staff = ["Tom", "Diana", "Romeo", "Harry", "Juliet"|]

10.

iterator = staff.listIterator();

staff = [|"Tom", "Diana", "Romeo", "Harry", "Juliet"]

11.

iterator.next();

staff = ["Tom", |"Diana", "Romeo", "Harry", "Juliet"]

12.

iterator.remove();

staff = [|"Diana", "Romeo", "Harry", "Juliet"]

13.

while (iterator.hasNext())

System.out.println(iterator.next());

Iteration 1 prints Diana:

staff = ["Diana", |"Romeo", "Harry", "Juliet"]

Iteration 2 prints Romeo:

staff = ["Diana", "Romeo", |"Harry", "Juliet"]

Iteration 3 prints Harry:

staff = ["Diana", "Romeo", "Harry", |"Juliet"]

Iteration 4 prints Juliet:

staff = ["Diana", "Romeo", "Harry", "Juliet"|]

R15.9

Linked lists can be advantageous over arrays if an application needs to add or remove data arbitrarily throughout the list; this process is relatively easy using linked lists but more difficult with arrays. A disadvantage is that randomly accessing elements within the linked list can be inefficient compared to an array.

R15.10

Answers can vary here.

Since there is a known upper bound on the data (10,000 elements) and the employee directory is relatively fixed, one could argue the use of an array list due to its efficient random access operator. On the other hand, if the employee list is heavily modified, one may prefer a linked list due to its ease of modification.

In practice, 6,000 elements and several hundred accesses is not a large data set or a computationally complex problem. It's likely that there will be no noticeable performance difference between the two.

R15.11

Since appointments are often added and removed, one would probably prefer a linked list. The linked list will allow easy of addition and removal of appointments.

R15.12

A queue since this data structure specifically limits additions to one end and removals from the other. A stack is the opposite where removals and additions occur on the same end.

R15.13

When "A"..."Z" are pushed on the first stack they will be stored in reverse order "Z"…"A". When popped off the first and pushed on the second, they will be in alphabetical order again "A"…"Z". Thus, they will be popped off the second stack in alphabetical order and will print "A"…"Z".

R15.14

Although both a set and map are unordered, the relevant property of a set is membership, where a map is a data structure that allows lookups of values based on a given key.

R15.15

To compute the union of set A and set B, remove one element from B at a time and add each element to A; continue this until B is empty.

To compute the intersection of set A and set B, remove each element from A, use contains to check whether the element is in B and if it is, add it to a temporary set; continue this until A is empty. The resulting set is the intersection between A and B.

R15.16

A union between a set A and B can be easily computed with the addAll method. First addAll elements from A to a copy of A, then addAll elements in B to that copy. The result is the union between A and B.

An intersection can be computed with the removeAll method. First, make a copy of B, then removeAll elements in B that are also in A. This leaves you all the elements in B that are not the intersection between B and A, thus removeAll of those elements from the original set of B and you're left with the intersection.

R15.17

A map can have two keys with the same value because the map would fetch either value depending on the key.

On the other hand, a map cannot have two values with the same key, as the map would be unable to distinguish which one is associated with an identical key.

R15.18

If a set contained (key, value) pairs, one could implement a get by iterating over the set until a key was found that matched the requested key, then the algorithm would return the value associated with that key.

The put operation can be implemented by first checking that no (key, value) pair exists with the same key, then adding the given (key, value) pair to the set.

R15.19

This code:

String a = "Juliet";

System.out.println(a.hashCode());

Prints:

-2065036585

Which conforms to Table 6.

R15.20

This code:

 String a = "VII";

 String b = "Ugh";

 System.out.println(a.hashCode() == b.hashCode());

Prints:

true

Which proves the hash codes are the same.

R15.21

The figure in the exercise should look like this:

[image: image1.png]

Start at A

A ​​​​→

Visit B

B ↑

B →

Visit H

H ↑

H →

H ←

B →

Visit P

P →

P ←

H →

H ←

B →

Visit Q

Q →

Q ↓

P ←

H →

H ←

B →

Visit R. Dead end

Q ↓

P ←

H →

H ←

B →

Visit J

J →

P ←

H →

H ←

B →

Visit K. Exit.

R15.22

Start at A

A →

Visit B

B ↑ B →

Visit C. Dead end

B ↑

Visit H.

H ↑ H → H ←

Visit G.

G ↑ H ↑ H →

Visit I.

I ↑ G ↑ H ↑

Visit P.

P → P ← I ↑ G ↑

Visit L. Dead end.

P → P ← I ↑

Visit N.

N ← P → P ←

Visit O. Dead end.

N ← P →

Visit Q.

Q → Q ↓ N ←

Visit M. Dead end.

Q → Q ↓

Visit J.

J → Q →

Visit R. Dead end.

J →

Visit K. Exit.

© John Wiley & Sons, Inc. All rights reserved. 1

